ECO COMPASS

Coordinator: Prof. Dr.-Ing. Xiaosu YI Organisation: BIAM, CHINA

RESEARCH & DEVELOPMENT OF GREEN COMPOSITES IN CHINA AND IN COOPERATION WITH EUROPE

Prof. Dr.-Ing. Xiaosu YI AVIC Composite Corporation Ltd. (ACC) Beijing Institute of Aeronautical Materials (BIAM) Beijing Engineering Laboratory of Green Composites

This project has received co-funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 690638 and the Chinese Ministry of Industry and Information under grant No MJ-2015-H-G-103

Outline

- 1. Why to jointly develop green composites for aviation?
- 2. Bio-sourced resins as matrices and plant fibers as reinforcing component for biocomposites
- 3. Special problem with biocomposites: flame retardation and hygrothermal stabilization
- 4. Trial application and demonstration
- **5.** Conclusions and outlook

Green Trend for Aviation

The CLEAN SKY is to identify, develop and validate the key technologies necessary to achieve major steps towards the ACARE environmental goals for 2020 when compared to 2000 levels:

- Clean Sky at a Glance Bringing Sustainable Air Transport Closer June 2011
- Fuel consumption and carbon dioxide (CO₂) emissions reduced by 50%
 - Nitrous oxides (NO_X) emissions reduced by 80%
- Perceived external noise reduction of 50%
- Improved environmental impact of the lifecycle of aircraft and related products.

ECO-COMPASS

- Ecological and Multifunctional <u>Composites</u> for Application in <u>Aircraft Interior and Secondary</u> <u>Structures (ECO-COMPASS)</u>
- The overall objective in ECO-COMPASS is to develop and assess multifunctional and ecological improved composites for application in aircraft secondary structures and interior.
- Approved by the Chinese and European government, and it started in April 2016, with a duration of 3 years (2016-2018)

ACCT Proprietary Properties, YiXS

Potential Application: Interior

Challenges

- Fire properties
- Weight
- Sensitivity for liquids and humidity

Possible use-cases

- Sidewalls
- Overhead Stowage Bins
- Wall Partitions
- Ceiling Panels
- Galley

Potential Application: Secondary Structure

7

ACCT Proprietary Properties, YiXS

ICGC-9, Japan

Consortia

CHINESE PARTNERS

DEUTSCHES ZENTRUM FUER LUFT - UND RAUMFAHRT EV

UNIVERSITY OF PATRAS

HARBIN INSTITUTE OF TECHNOLOGY

Cinegi driving science

INSTITUTO DE CIENCIA E INOVACAO EM ENGENHARIA MECANICA E ENGENHARIA INDUSTRIAL

中就复合材料有限责任公司

AVIC COMPOSITE CORPORATION, LTD

AVIC HEFEI HANGTAI ELECTROPHYSICS CO., LTD

AVIC XI'AN AIRCRAFT INDUSTRY (GROUP) COMPANY LTD

L-UP

GROUP

AIRBUS GROUP INNOVATIONS

INNOVATIONS

AVIC BEJING INSTITUTE OF AERONAUTICAL MATERIALS

EUROPEAN PARTNERS

FROM 6 COUNTRIES

CIMNE⁹

CENTRE INTERNACIONAL

DE METODES NUMERICS EN

ENGINYERIA

MANCHESTER

UNIVERSITY OF MANCHESTER

中航工业哈飞

AVIC HAIG

AVIC HARBIN AIRCRAFT

INDUSTRY (GROUP) CO. LTD

2

TONGJI UNIVERSITY

ICGC-9, Japan

_Eit**ə**t

echnological Center

ACONDICIONAMIENTO

TARRASENSE ASSOCIACION

中航通用飞机有限责任公司

CHINA AVIATION INDUSTRY

GENERAL AIRCRAFT CO., LTD

CNITECH

NINGBO INSTITUTE

OF INDUSTRIAL TECHNOLOGY, CHINESE ACADEMY OF SCIENCES.

Outline

- 1. Why to jointly develop green composites for aviation?
- 2. Bio-sourced resins as matrices and plant fibers as reinforcing component for biocomposites
- 3. Special problem with biocomposites: flame retardation and hygrothermal stabilization
- 4. Trial application and demonstration
- **5.** Conclusions and outlook

Bio-sourced Resins for Composites

Two anhydride-type EP curing agents (maleopimaric acid /MPA and methyl maleopimarate /MMP) were synthesized from rosin acids.

For comparison, their commercial petroleumbased analogs (1,2-cyclohexanedicarboxylic anhydride /CHDB and 1,2,4-benzenetricarboxylic anhydride /BTCA) were also used to cure liquid EP resins DER332 (2,2-bis[4-(glycidyloxy)phenyl] propane, 171-175 g/eg).

MMP- and MPA-cured EP show similar modulus levels as systems cured by CHDB and BTCA, but yield higher Tg, being attributable to the fact that the bulky fused ring structures of MMP and MPA restrict segmental mobility levels between crosslink's, resulting in higher Tg levels.

X. Liu, J. Zhang, High-performance biobased epoxy derived from rosin, Polym. Int. 59(2010) 607-609

Mechanical Properties of A Rosin-Epoxy

Items	Current Results	Target	Bisphenol A Epoxy
Tensile Stress	~70MPa	75-90MPa	60-90MPa
Tensile Modulus	2.8GPa	3.5GPa	2-3.5GPa
Tg (° C)	120-130 ℃	70-150°C	90-150°C
State (25°C)	liquid	liquid/solid	Liquid/solid

X. Liu, J. Zhang, High-performance biobased epoxy derived from rosin, Polym. Int. 59(2010) 607-609

What Fibers Suitable As Reinforcement?

Fiber	Density (g/cm ³)	Elongation at break (%)	Tensile Strength (MPa)	Tensile Modulus (GPa)
Ramie	1.5	3.6-3.8	400-938	44-128
Sisal	1.45	2.0-2.5	511-700	3.0-98
Jute	1.3-1.45	1.5-1.8	270-900	10-30
Kenaf	/	2.7	427-519	23.1-27.1
Hemp	1.48	1.6	270-900	20-70
E-Glass	2.60	0.2-0.3	3500	72
Kevlar	1.44	2.3-4.0	3900	131

Ramie, China Grass (夏布)

Ramie, native to China, is an important fiber crop in China since ancient times with a planting history of longer than 4700 years. At present there are approximately 4,000,000 Chinese acres of grass sown area of ramie, producing over 90% ramie output worldwide.

Ramie fabric was listed as by all previous dynasties Goinbo, became valuable thing which the imperial family and the high official aristocrat liked.

ΜΡΛςς

ACCT Proprietary Properties, YiXS

Ramie Fiber For Reinforcement

SEM micrographs of fractured surfaces of a ramie fiber embedded in epoxy

Li Y., Hu Y.P., Hu C.J. and Yu Y.H., Microstructures and Mechanical Properties of Natural Fibers, Advanced Materials Research, Vol. 33-37, 2008, 553-558

Interface, the Key Factor For the Application

Li Y., Hu Y.P., Hu C.J. and Yu Y.H., Microstructures and Mechanical Properties of Natural Fibers, Advanced Materials Research, Vol. 33-37, 2008, 553-558

Specific Mechanical Properties with Phenol Resin

Specific Mechanical Properties with Epoxy Resin

ACCT Proprietary Properties, YiXS

Improvement of the Interfacial Bonding

Nanoparticles (ZrO₂.*n*H₂O) on the flex fiber surface (b) in a remarkably agglomerated form. In comparison with it, grafting assisted with stirring (c) or sonification (d) resulted in more homogenous nanoparticle formation patterns.

Attributed to the fact that stirring and sonification mixing promote the deposition of ZrO₂.nH₂O particles on fiber surfaces, resulting in reduced particle agglomeration.

Wang, H., G. Xian, and H. Li, Grafting of nano- TiO_2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite. Composites Part A: Applied Science and Manufacturing, 2015. 76: p. 172-180

SEM images of surfaces of (a) control flax fibers, (b) fibers grafted under non-stirring conditions, (c) fibers grafted with mechanically stirring, and (d) fibers grafted via ultrasound sonication

Microscopic Study

- TEM photograph of a cross section of a flax fiber grafted with ZrO₂.nH₂O particles via ultrasonic.
 - The ZrO₂.*n*H₂O particles were grafted onto the FF surfaces in aggregation, and the diameter of the fine particles can be measured in nanometers.

The left-hand image presents a cross section of the FF and of cracks formed during slicing. The black particles are

Wang, H., G. Xian, and H. Li, Grafting of nano- TiO_2 onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite. Composites Part A: Applied Science and Manufacturing, 2015. 76: p. 172-180

ICGC-9, Japan

nanoparticle aggregations

Single Fiber Tensile Test for the Control and Grafted FF

Samples	Tensile strength (MPa)	Young's modulus (MPa)	Elongation at break (%)	
Control Fiber	399.7	30.4	1.56	
Fiber grafted with non-stirring	512.9	32.8	1.82	
Fiber grafted with mechanically Stirring	450.3	29.2	1.43	
Fiber grafted with sonication	723.4	33.6	1.69	
Fiber treated with sonication	428.8	30.2	1.57	

Wang, H., G. Xian, and H. Li, Grafting of nano-TiO₂ onto flax fibers and the enhancement of the mechanical properties of the flax fiber and flax fiber/epoxy composite. Composites Part A: Applied Science and Manufacturing, 2015. 76: p. 172-180

Outline

- 1. Why to jointly develop green composites for aviation?
- 2. Bio-sourced resins as matrices and plant fibers as reinforcing component for biocomposites
- 3. Special problem with biocomposites: flame retardation and hygrothermal stabilization
- 4. Trial application and demonstration
- **5.** Conclusions and outlook

Flammability Study

- Test samples: Ramie fiber ~ 70 vol %, phenolic resin = GP4141
- With increased fire retardant, the LOI increases whereas the tensile and flexural strength decreases accordantly.

SEM Images of Fracture Surfaces of Benzoxazine Composites

BZ/ramie (a, b, c),
BZ/ramie/MWNT/APP (d, e, f) and BZ/ramie/PEI/APP (g, h, i) laminates

Intumescent multilayer nano-coatings not only improve fabric flame retardancy levels but also enhance interfacial adhesion between fabrics and certain polymer matrices.

Fiber pull out effects disappeared after surface treatments were applied to the fractured composite surface

Simultaneous Improvement of The Properties

Heat release rate curves (I) and flexural stress levels vs. strain curves (r) for benzoxazine resin/ramie fabric laminates

Zhang T, Wang LL, Yan HQ, Fang ZP. Construction of flame retardant coating on ramie fabric via layer-by-layer assembly and its application in polybenzoxazine laminate, The third Grubbs Symposium-Polymers and Green Industry, Ningbo, China, 2014.4.18-20

Study on Antimicrobial Activity of ZrO₂ in Composite

- In the control, a significant expansion of fungal colonies was observed throughout the composite, whereas in the modified samples, almost no colony growth was found. This reveals the antifungal activity of ZrO₂ nanoparticles*.
 - Thus, composites with significant antimicrobial properties are expected to exhibit long-term stability features.

Khan BA, Warner P, Wang H, Antibacterial Properties of Hemp and Other Natural Fibre Plants: A Review. Bioresources 2014; 9(2):3642-3659.

Outline

- 1. Why to jointly develop green composites for aviation?
- 2. Bio-sourced resins as matrices and plant fibers as reinforcing component for biocomposites
- 3. Special problem with biocomposites: flame retardation and hygrothermal stabilization
- 4. Trial application and demonstration
- **5.** Conclusions and outlook

ACCT Proprietary Properties, YiXS

Structural Damping Functionality of the Biocomposite

Unique low density + damping properties due to the porous microstructures

Structural Damping Behavior in Comparison

A ramie laminate loss factor (η) of 0.0129 for the free vibration condition, which is over 30% higher than that of the jute laminate of 0.0099, whereas in the forced vibration condition, η values of the first and second order are 0.143 (η_1) and 0.032 (η_2), respectively, for the ramie and 0.118 (η_1) and 0.025 (η_2), respectively, for the jute.

These results suggest that ramie may exhibit higher levels of damping efficiency than jute, though both maintain their inherent structural properties

N.Ni, Y.Wen, D.He, XS.Yi, et al, High damping and high stiffness CFRP composites with aramid non-woven fabric interlayers. Compos.Sci.Technol. 117 (2015) 92-99

Comparison Between Physical and Mechanical Properties of the Neat and Hybrid Laminates

	Density (g/cm ³)	Loss factor	Tensile strength (MPa)	Tensile modulus (GPa)	Interlaminar shear strength (MPa)	Elongation at break (%)	Impact toughness (kJ/m²)
R10	1.35	0.0129	68	11	21	0.6	24.7
G10	1.73	0.0042	481	20	71	2.4	220.7
GRGRG	1.59	0.0043	322	15	59	2.2	138.4
RGRGR	1.51	0.0101	278	10	36	2.84	116.4
C10	1.53	0.0018	888	61	88	1.3	104.4
CRCRC	1.49	0.0024	596	40.2	50	1.5	86.2
RCRCR	1.40	0.0057	382	21.3	32	1.1	55.0

N.Ni, Y.Wen, D.He, XS.Yi, et al, High damping and high stiffness CFRP composites with aramid non-woven fabric interlayers. Compos. Sci. Technol. 117 (2015) 92-99

Application in Music Instruments and Sport Articles

ECO COMPASS

Outline

- 1. Why to jointly develop green composites for aviation?
- 2. Bio-sourced resins as matrices and plant fibers as reinforcing component for biocomposites
- 3. Special problem with biocomposites: flame retardation and hygrothermal stabilization
- 4. Trial application and demonstration
- **5.** Conclusions and outlook

 Manufacturing of an acoustic panel in a ramie/glass/E
P hybridlaminated design

Yi XS, et al. PCT Patent in pending

Manufacturing of an acoustic panel in a ramie/glass/EP hybridlaminated design

Yi XS, et al. PCT Patent in pending

 Sandwich panels with plain-woven ramie as face sheets
impregnated with phenol and with
Nomex
honeycomb as the core

Yi XS, et al. PCT Patent in pending

 Proof-of-concept demonstration of a decorative, quasi-structural composite side-panel produced with ramie fabric as the surface layer of a railcar

Yi XS, et al. PCT Patent in pending

ACCT Proprietary Properties, YiXS

Application of decorative, function-integrated composite panels to the interior of a seaplane

Yi XS, et al. PCT Patent in pending

Conclusions

- 1. Bio-sourced polymers, natural fiber reinforcements and biocomposites have continuously been studied and developed worldwide. However, environmental and resource-related benefits of these new materials are still compromised by limited technical performance and material life properties.
- 2. The development goal is to advance material technologies and to effectively apply novel composites to aircraft, rail transportation and civil engineering settings. This involves adapting materials and processes to state-of-the-art composite standards.
- 3. The development of function-integrated PFRC structure appears to be more essential and feasible than that of mere "high-performance" biocomposites. Typical cases pertaining to structural damping and decorative quasi-structural composites have been presented.

ACKNOWLEDGEMENT

The project was partially supported by the Chinese Basic Research Program (973 Program), National Natural Science Foundations of China, the European Union's Horizon 2020 research and innovation program under grant agreement No 690638 and the Ministry for Industry and Information of China under grant No MJ-2015-H-G-103

CONTACT

EU Coordinator: Jens Bachmann (German Aerospace Center, DLR) Phone: +49 53 12 95 32 18 E-mail: jens.bachmann@dlr.de

Chinese Coordinator: Xiaosu Yi (AVIC Beijing Institute of Aeronautical Materials) Phone: +86 10 62 49 67 40 E-mail: yi_xiaosu@sina.cn

THANK YOU FOR YOUR ATTENTION.

2016/11/2-4